CS18 VHS

Calibration System Very-High-g-Shock Secondary

Applications

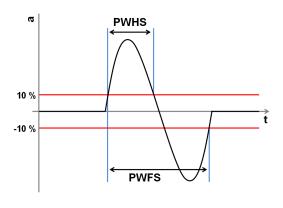
- Secondary calibration of shock transducers as well as complete measuring instruments in form of a measuring chain, with very high precision and efficiency, according to ISO 16063-22 (calibration by the comparison method)
- Secondary calibration of shock accelerometer reference standards

Range of Use

- Accredited calibration laboratories
- Departments of measuring instrument verification in research and development particular in the aviation and space travel or in the military industry
- Quality assurance in sensor manufacturing
- National metrology laboratories as highest measurement authorities

Features

- Traceable to Physikalisch Technische Bundesanstalt (PTB) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Type of excitation: sinusoidal shock
- Shock amplitudes up to 200.000 g_n
- Excellent repeatability of shock
- Position of DUT: horizontal
- Sensor mass (DUT) up to 15 gram
- Realization of all automatic calibrations according to own test regime (up to 20 shocks/ minute)
- Calibration of sensors with / without measuring amplifier and measuring systems (sensor with signal conditioner)
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of aptitude for calibration (bridge resistance, offset, drift) of PR sensors in conjunction with software PR measurement
- Upgradeable to a combined calibration system e.g. CS18 VHS / HF

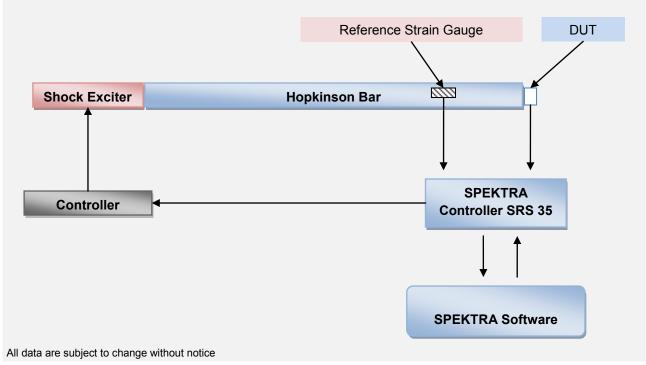

CS18 VHS

SPEKTRA

Calibration System Very-High-g-Shock Secondary

Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-222 HOP-VHS
- Reference standard strain gauge BN-19
- High speed Data Acquisition System


Performance Specification¹⁾

Shock Acceleration		10,000 g _n 200,000 g _n
Pulse Width PWFS / PWHS 2)		typical 40 μs / 20 μs
Sensor Mass (DUT)		max. 15 gram
Uncertainty ³⁾	10,000 g _n 20,000 g _n	< 3 %
	20,000 g _n 50,000 g _n	< 4 %
	50,000 g _n 100,000 g _n	< 5 %
	100,000 g _n 200,000 g _n	< 8 %

 $^{^{1)}}$ All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

³⁾ Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

Air Supply		8 bar
Dimensions Hopkinson Bar	Length	approx. 3.5 m
	Height	0.8 m 1.2 m
	Width	approx. 1 m

November 2013

 $^{^{2)}\,}$ PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave