




### Applications

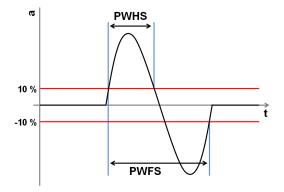
- **Primary calibration** of shock sensor transducers as well as complete measuring instruments (measuring chain) with very high precision and efficiency, according to **ISO 16063-13**
- Primary calibration of shock accelerometer reference standards

### Range of Use

- National metrology laboratories as highest measurement authorities
- Accredited calibration laboratories
- Departments of **measuring instrument verification** in research and development particular in the aviation and space travel
- Quality assurance in sensor manufacturing

#### Features

- **Traceable** to **P**hysikalisch **T**echnische **B**undesanstalt (**PTB**) Braunschweig by the accredited SPEKTRA Calibration-Laboratory D-K-15183-01-00
- Broad amplitude range to 75.000 g<sub>n</sub>, optionally up to 150.000 g<sub>n</sub> with High Speed Vibrometer
- Type of excitation: sinusoidal shock
- Excellent repeatability of shock
- Sensor mass (DUT) up to 30 gram
- Realization of all automatic calibrations according to own test regime (up to 20 shocks/ min)
- Calibration of sensors with / without measuring amplifier and measuring systems
- Direct connection of piezo-resistive sensors through integrated PR signal conditioner
- Determination of aptitude for calibration (bridge resistance, offset, drift) of PR sensors in conjunction with Software option PR measurement
- Integration of a **reference standard** for secondary calibration according to ISO 16063-22
- Upgradeable to a combined calibration system e.g. CS18P HS / HF


# CS18P HS

# Primary Calibration System High-g-Shock

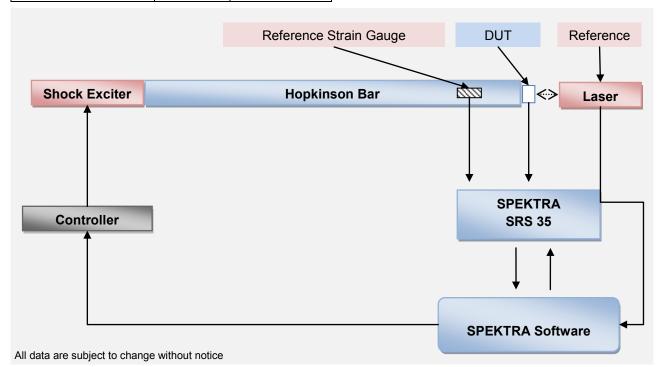


# Components

- Vibration control system SRS-35 by SPEKTRA with integrated PR signal conditioner
- Shock exciter SE-221 HOP-HS
- Reference standard laser vibrometer PLV-03
- Reference standard for secondary calibration
- High speed Data Acquisition System



# Performance Specification Primary<sup>1)</sup>


| Shock Acceleration                    |                                             | 1,000 g <sub>n</sub> 75,000 g <sub>n</sub> |
|---------------------------------------|---------------------------------------------|--------------------------------------------|
| Pulse Width PWFS / PWHS <sup>2)</sup> |                                             | typical 50 μs / 25 μs                      |
| Sensor Mass (DUT)                     |                                             | max. 30 gram                               |
| Uncertainty <sup>3)</sup>             | 500 g <sub>n</sub> 2,000 g <sub>n</sub>     | < 2,2 %                                    |
|                                       | 2,000 g <sub>n</sub> 20,000 g <sub>n</sub>  | < 2,5 %                                    |
|                                       | 20,000 g <sub>n</sub> 50,000 g <sub>n</sub> | < 2,8 %                                    |
|                                       | 50,000 g <sub>n</sub> 75,000 g <sub>n</sub> | < 3,1 %                                    |

 $^{1)}$  All data for environmental conditions: temperature 23°C (± 2°C) and relative humidity 30 % ... 75 %

 $^{2)}\,$  PWHS = Pulse Width Half Sine Wave; PWFS = Pulse Width Full Sine Wave

<sup>3)</sup> Determined according to GUM (ISO Guide to the expression of uncertainty in measurement, 1995) with k = 2 (coverage factor)

| Air Supply                  |        | 8 bar         |
|-----------------------------|--------|---------------|
| Dimensions<br>Hopkinson Bar | Length | approx. 3.5 m |
|                             | Height | 0.8 m 1.2 m   |
|                             | Width  | approx. 1 m   |



November 2013

SPEKTRA Schwingungstechnik und Akustik GmbH Dresden, Germany

www.spektra-dresden.com